GradReady GradReady Physics ${ }^{\circledR}$ Formula Sheet

CONSTANT ACCELERATION FORMULAE

NEWTON'S 2ND LAW

OF MOTION

MECHANICAL

ENERGY

GRAVITATIONAL

POTENTIAL ENERGY

$$
p=m v
$$

$$
\Sigma F=m \times a
$$

$\Sigma F=$ net force acting on an object (N)
$\Sigma F=$ net force acting on an object (N)
$\mathrm{m}=$ mass of object (kg)
$\mathrm{m}=$ mass of object (kg)
$\mathrm{a}=$ acceleration of object $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
$\mathrm{a}=$ acceleration of object $\left(\mathrm{m} / \mathrm{s}^{2}\right)$

$$
M E=U_{s}+U_{g}+K E
$$

ME = mechanical energy (J)
ME = mechanical energy (J)
Us = spring potential energy, a.k.a elastic
Us = spring potential energy, a.k.a elastic
potential energy (J)
potential energy (J)
Ug = gravitational potential energy (J)
Ug = gravitational potential energy (J)
KE = kinetic energy (J)
KE = kinetic energy (J)

MOMENTUM

$$
\mathrm{U}_{\mathrm{g}}=\mathrm{mgh}
$$

TORQUE

$$
T=F x d x \sin (\theta)
$$

T = Torque (Nm)
F = Force applied on lever (N)
$\mathrm{d}=$ Distance that the force is applied from the axis of rotation (m)
$\theta=$ Angle between force vector and distance vector, $\sin (\theta)$ is equal to 1 if perpendicular

[^0]TEMPERATURE
CHANGE

KINETIC

ENERGY

$K E=\frac{1}{2} m v^{2}$

KE = Kinetic energy of object (J)
$\mathrm{m}=$ Mass of object (kg)
$\mathrm{v}=$ Velocity of object (m / s)

GRAVITATIONAL

FORCE
$F=\frac{G \times m_{1} \times m_{2}}{r_{2}}$

$F=q v b$

F = Magnetic Force
$q=$ Charge of the particle
$\mathrm{v}=$ Velocity of the charged particle
b = Magnetic Field Strength
$F=$ gravitational force of attraction from the center of mass of the two objects (N)
$\mathrm{G}=$ gravitational constant $6.674 \times 10^{-11} \mathrm{Nm}$ kg
$\mathrm{m} 1=$ mass of one of the objects (kg)
m 2 = mass of the other object (kg)
$r=$ distance between the center of the mass of the two objects (m)

PRESSURE

$$
P=\frac{F}{A}
$$

P = Pressure (N/m or Pascals)
$\mathrm{F}=$ Force applied on a surface (N)
A = Area of surface (m^{2})

$\mathrm{V}=$ Voltage (volts)
 I = Current (amps)
 R = Resistance (ohms)
 ELECTRICAL POWER
 LAW

$$
P=I V=I^{2} R=\frac{V^{2}}{R}
$$

P = Power
$\mathrm{V}=$ Voltage (volts)
I = Current (amps)
$\mathrm{R}=$ Resistance (ohms)

ARCHIMEDES
 PRINCIPLE

$F_{b}=F_{\text {gof object }}=F_{\text {gof fluid displaced }}=p_{\text {fulud }} \times V_{g \text { of fluid displaced }} \times g$
$\mathrm{F}_{\mathrm{b}}=$ Force of buoyance (N)
$\mathrm{F}_{\mathrm{g} \text { of object }}=$ Weight of object (N)
F_{g} of fluid displaced $=$ Weight of fluid displaced (N)
$P_{\text {fluid }}=$ Density of fluid $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
Vfluid displaced $=$ Volume of fluid displaced by the object in the fluid (m^{3})
$\mathrm{g}=$ gravitational field strength, a.k.a acceleration due to gravity $=9.8 \mathrm{~N} / \mathrm{kg}=9.8 \mathrm{~m} / \mathrm{s}$

Don't Miss out on our Free Medical School Admissions Webinar!

Cover the Admissions Milestones with Current Med Students

Confused by the Medical Schools Admission Process? Want tips from a Current Medical Student on the Admissions Milestones and Criteria?

Here at GradReady we're running a free Medical School Admissions Webinar which will provide students with a breakdown of the changes and key milestones.

This webinar will cover the admission process of medical schools in 5 states: VIC, NSW, QLD, WA \& SA.

We'll also cover portfolios in all these webinars with advice for UNDS, UNDF, UOW \& MQ.

This webinar will highlight the admissions milestones and the GEMSAS admissions process (including details on preferencing) and canvass the various admissions criteria for graduate medical schools across Australia. You'll have the opportunity to ask all your burning questions about the long year ahead.

For further details visit:
gradready.com.au/admsat/events

You can also visit our FB Page to find booking information and event details.

ELECTROSTATIC FORCE

$F=\frac{k \times q_{1} \times q_{2}}{r^{2}}$

F = electrostatic force acting between two charged
objects (N)
k = Coulomb's constant = 9.0* 10 NmC
q1 = magnitude of one of the charged object (C)
q2 = magnitude of the other charged object (C)
$r=$ distance between the center of the two charges (m)

WORK

$W=F x d x \cos (\theta)$

$W=F x d$

W = Work done (J)
or
F = Force applied on object (N)
d = Distance object moves due to the application of the force (m)
$\theta=$ Angle between force vector and displacement vector, $\cos (\theta)$ is equal to 1 when the force vector is in the same direction as the movement of the object
$\mathrm{W}=$ Work done (J)
$\mathrm{F}=$ Component of the force that acts parallel to the distance only (N)
$d=$ Distance object moves due to the application of the force (m)

Average Improvement of 20+ Percentile Points

Over the last 10+ Years

$10,000+$	$10+$	Most Advanced
Happy Students	Years Experience	Technology

[^0]: Ug = gravitational potential energy (J)
 $\mathrm{m}=$ Mass of object (kg)
 $\mathrm{g}=$ Acceleration due to gravity $=9.8 \mathrm{~m} / \mathrm{s}^{2}=$ gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
 $h=$ Vertical height above a reference level (m)

